Mid-America Conference on Intelligent Systems
October 27 & 28, 1994 Overland Park, Kansas

PRACTICAL ISSUES OF Al

John M. Switlik
Commercial Airplane Support Group - Wichita
Boeing Computer Services
Wichita, KS 67207

ABSTRACT

This paper covers several issues that are of practical
importance to computer application projects, and it
looks at systems with an artificial intelligence (AI)
heritage, namely knowledge based systems (KBS) and
knowledge based engineering (KBE). The intent of
the paper is to discuss the problems that are inherent
to advanced computing systems through briefly
reviewing related topics; these topics are still active
research areas, however practical computing has to
successfully address the issues. The most prevalent
means for doing this revolves around applying human
expertise and providing a sound foundation for
development. The paper will look at the changes in
the software industry brought on by computing
progression into complex systems, will briefly
review issues of computability and complexity, and
then will look at the necessity for verification,
validation, and test (VVT) of KBS/KBE.

1 OVERVIEW: BOXES -
BLACK AND WHITE

Let's look at a box view of computer systems. Boxes
can be black or white (or opaque or clear). As well,
one can think of various levels of gray boxes. For
the purposes of this paper, consider that these boxes
are similar except for the type of justification that
may be connected with them.

Take the black box, please. Generally, there is some
intended behavior that the developer of the box wants
to achieve, there is a set of knobs for controlling the
behavior, and there will be input/output and state
descriptions related to the box. There is an expected
behavior that the user of the box will have which
might be described in terms of specific functionality,
knob setting, or state transitions. The user will
establish a judgement about whether the black box
meets the expectation through various means usually
based upon usage. Successful judgements can be
associated with justification. Continued successful
use, for example, will raise the user's confidence in,
and knowledge of, the box. The confidence with
which the user views the box's creator and verifier

will be a factor, as well. In regard to having an
intent, a behavior, and a justification, the black box
shares a commonality with the white box.

However, the white box (or varying lighter gray
boxes) has one additional characteristic. With a white
box, the user may, if he or she so wishes, look into
the box and its logical structure as a bases for the
justification and do a more thorough review of the
box, whereas with the black box, this is not an
option. That is one method of viewing the blackness
(hidden information). A white box can be unlocked,
from the user's view, so that its contents can be made
visible.

The black box has to be evaluated from its external
view, or behavior, only [8]. One can attempt to
deduce the internal view from this external view, and,
with luck, get close to an accurate understanding of
the workings. Without a look at the contents,
though, there is no means to check this inference.
One might argue that a black box allows only the
extensional view of its particular domain, while the
white box supports the intensional view, as well. In
this regard, the white box will allow non-
enumerative, or analytical, reasoning about a domain,
while, unless there is a good inference as to the black
box's intensional aspects, such a non-enumerative
look would be hit-and-miss, at best.

Figure 1 shows three boxes. The idea is that the
black box supports only external or behavioral views.
The gray box allows some analysis, but there may be
missing or hidden information. The white box is
fully open but not necessarily simple or complete.
There is another set of issues concerned with
evolutionary methods, e.g. neural nets. This paper
only notes that the black box idea applies to these as
well as it does to the traditional methods.

These definitions are not meant to be necessarily
complete but are intended to illustrate a problem. For
the sake of the paper's content, just assume that the
reader doesn't have the key that unlocks the black
box, whereas, for the white box, all keys are readily
available and useable.

Mid-America Conference on Intelligent Systems (MACIS 1994)
“Applications in Manufacturing and Service Industries”
Oct. 27 & 28, 1994 — Marriott Hotel, Overland Park, Kansas

inputs/
pre-states

N\
N\

Box of varying color from black to white,
: with increasing levels of information.

Description of intents, of black box behavior,
[:3 of white box specification, or of mixture thereof.

Control knobs or technical metrics of box that
@ allow manipulation and measurement.

Figure 1. Types of Boxes

But, perfect visibility still raises issues. Though the
user can obtain access to a white box, this does not
mean that the bases for the justification of the box
can be easily (or even necessarily) verified. That is,
the major weakness of a computer-based endeavor
resolves around this issue: the ability to verify a
white box's contents will be directly related to the
analytical basis of the particular domain and to the
ability of this basis to be computed. As computing
progresses, we face the increasingly complex tasks of
verification and validation. Support will partially
come from advances in the mathematical and logical
support for computer science [5][6][15], will partially
come as different disciplines revolutionize their
domains [10], and from applied human expertise [2].
This paper will address these problems and suggest
one workable approach.

2 SOFTWARE TRENDS

The development (and use) of computer system
software has seen, over the years, a transition from
the very low-level black to the high-level black box
being collected into white boxes. One example of the
former is the machine focus of early programming,
some of which included setting hard instructions and
parameters by wire. Other examples of the former
would also be assembly-level coding and many types

of procedural programming. Now, even with the
nature of these low-level boxes, the problems of
providing reliable computing systems was not a
given; that is, issues of computability have been
there from the beginning as the experiences of the
industry indicate.

An example of the high-level black box might be a
machine learning system (e.g. neural network) or a
system of agents [7]. However, other examples of
the latter are the domain tools (such as ICAD -
Intelligent CAD), 4GL environments, spreadsheets,
DBMS, simulation languages (such as AUTOMOD),
and the general Al tool (such as ADS), and many
other examples. A growing set of black boxes that
provide white box functionality, also, are the CASE
tools [7]. This paper does not address these types of
systems in particular, however strong arguments can
be made for the importance of this class of systems
for the future of computing [10].

This white/black box issue is also evident in the
emphasis of certain methodologies on information
hiding as found in the object-oriented programming
paradigm. As the software industry has progressed,
the availability of black boxes of all sorts has
increased considerably. Development, in many cases,
has taken on the characteristic of white-box
manipulation of black-box effects. This is especially
true within the use of the general Al tools and domain
tools. Along with availability, the size and
complexity of the black boxes has grown as well.
Several issues become more predominant: the
predictability of runtimes declines, black boxes
become known more by their behavior as the
potential for obtaining a white-box view becomes
more remote, verification becomes more difficult [8].

The box example illustrates some of the problems.
On a closer look, there will be specific issues related
to languages-grammars, their associated algebras-
logics-operators, interpretation functions, and a
myriad other technical details. Advanced work in
computing logic can focus on the language and what
it can convey or on the concept and how to express it
[7]. A lot of the discussion revolves around
‘knowledge’ and what it means in different contexts.

Research papers reporting results appear continually
(some are mentioned in References). From a practical
viewpoint, though, the major idea is to support a
development approach that assumes that the more
complex environments need tools, an empirical basis,
and an experimental mindset. Tools that facilitate
analysis, measurement, and continued improvement
of these white-black box collections, that we call code
(e.g. rules, concepts, functions, objects), will be the
focus [14].

Mid-America Conference on Intelligent Systems (MACIS 1994)
“Applications in Manufacturing and Service Industries”
Oct. 27 & 28, 1994 — Marriott Hotel, Overland Park, Kansas

Figure 2 provides a view of the software process and
shows the relationship between the above-the-floor
(atf) human view and the below-the-floor (btf)
computer view. The emergence of the object
paradigm, which attempts to model the world from a
common framework, has paralleled the advance in
knowledge systems. The af effort addresses how to
determine the problem representation sufficiently that
bif model can be built. Semantic objects from the atf
world will relate to specific objects of the bif world
[12]. The main problem of software is to provide
workable morphisms between the atf view and the bif
constraints. This can be phrased in the problem
versus solution space differences. The growing
interest in rapid development partly results from a
recognition that handling these morphisms is best
supported by tools that match well with the human
intuitive view of a problem [10]. This subject will
be addressed further in the next section.

As an example of a tool, take the general Al tool that
provides the basis for developing a KBS application.
ADS (AION Development System) offers an
interactive development environment with editors for
defining and modifying objects that make up the
functionality of the KBS, e.g. classes, rules, states,
vocabularies, slots, and other objects. In addition,
ADS offers an interpreted execution environment with
analysis and debugging support. The features of ADS

world, as interpreted by humans

0-O Database AI/O-0
- schema inf
- operators - inference
- some inference - assessment
- measure (fuzzy)
sense/
denotation

Implementation
via Tools

via Tools

sense/
denotation

interpretations as
implemented on the computer

- realizables

L—----_—_——_——

-idealizables

allow domain knowledge representation to be
developed and demonstrated quickly. The focus of
ADS is general and does not limit the types of
application domains in which it is used. There are
add-ons to ADS, such as the VGE (Virtual Graphics
Environment) product of Stone and Webster, that
provide a specific domain focus, in this case, CATIA
(product of Dassault Systemes) CATGEO
programming. The ADS/VGE combination provides
a rich environment for developing intelligent systems
with the design/manufacturing domain.

As another example, ICAD is a domain (intelligent
design) tool where the application domain is the
design of parts; ICAD accomplishes its tasks through
the provisions of a language, called IDL, and its
supporting environment that allows the definition of
parts, their attributes (including features), and
relationships between parts. Parts can be related
several ways using IDL, including user-defined
relationships, and the language allows the definition
of geometric constraints. The IDL language
statements are converted into compilable code
automatically, and compilation can be accomplished
incrementally. The ICAD environment provides a
browser that graphically supports perusal of parts,
their attributes, their relationships, and their

S Real World Problem
- disciplines
- processes

I Foor - fuzzy barrier
between problem/
solution spaces

~
Application
Base/Utility Objects
| W‘“ I

Solution Domain

Figure 2. Software Trends and Issues of Rapid Development

Mid-America Conference on Intelligent Systems (MACIS 1994)
“Applications in Manufacturing and Service Industries”
Oct. 27 & 28, 1994 — Marriott Hotel, Overland Park, Kansas

geometric characteristics. Also, ICAD provides
linkages to several CAD systems, including CATIA.

The chief advantage of these domain tools is that the
morphisms between the problem and the solution
spaces are specific and thereby constrained in the
particular manner required by the domain [12]. As
well, objects and their operators will have already
been defined such that they incorporate some domain
knowledge. The emphasis on both analysis and
design with a domain tool will be at a higher level
than with a general class of tool, allowing earlier
focus toward implementation via prototyping.

Given the availability of a domain tool, a KBS/KBE
project can take an approach that makes use of
incremental cycles consisting of design, construction,
and measurement of operable code. The measurement
focuses on early and continual added-value to the
customer.

This approach can be applied in many application
areas. Itis especially useful in disciplines with large
and complex domains where analytic views are
difficult to attain, though portions of the domain may
be analytically verifiable. The approach emphasizes
identification of goals that can be incrementally
attained; the approach must be accompanied with
rigorous testing and validation - VVT; and the
customer will recognize the validity of the approach
through value added by the computer.

One area that requires focus during prototyping is that
of computability. Another issue is that of scale-up.
A solution in the small does not necessarily continue
to work as the problem size is increased. Also, the
characteristics of the problem space that might assist
in specifying bounds for the solution space need to be
explored. The justification for prototyping are many;
one might look at this approach as performing
concurrent engineering of software.

3 COMPUTABILITY, COMPLEXITY,
AND LOGIC

First the paper looked at how the computing
paradigm can be discussed in terms of boxes of
varying degrees of color and complexity; then the
paper reviewed how the software development aspect
of computing is undergoing change. The differences
in the development approach that are required by
KBS/KBE and advanced computing have been
presented. Now, the paper looks at why these issues
come into play in order to prepare the stage for a
discussion of VVT. In general, the computability of
a problem will be largely influenced by the domains
involved, and a lot of computing success has resulted
from good domain understanding. However, many

44

assumptions about the knowledge of a domain do not
hold up under the rigorous demands of computing.
There are many reasons for the mismatch if one views
the issue from the atf/btf framework. We need to
build an experimental/empirical viewpoint, in which
computing failure, in itself, is not necessarily bad;
some domains are poorly understood and need
clarifying analysis. Any computing experience, good
or bad, if viewed properly will help expand what is
known about the domain. A potential fractured/fractal
(e.g. unconnected or multi-connected regions within
the problem and solution spaces) nature in some
domains will best be explored via automated means
supported by good human intuition and processes.

Let’s look at computability. Its definition will
include words relating to whether an object has a
certain domain property as expressed by a predicate
and how to decide that this is so. The decidability of
the predicate can be reduced to finding a function that
provides an answer. To show that such a function is
computable, it is “sufficient to give an algorithm that
computes it.” However, without a precise definition
of the algorithm, “all such demonstrations are open to
question until they are executed [13].” It is even
more uncertain to show that a function is not
computable. Hence, this is an important subject to
KBS and KBE, in particular, and all software, in
general. We can work toward precision in specifying
algorithms, however, given the inadequacy of the
algorithmic approach, heuristics (rules-of-thumb) are
often more successful. The question of computability
can be seen to rest with functions and computing
functions.

Some discussions about computability involve the
definition of an abstract machine, e.g. Turing, that
can be defined for a function. However, there is one
major problem with an abstract machine. There is no
guarantee that the machine will stop computing and
provide an answer. Hence, a lot of effort is put into
increasing the chance that a computation will succeed.
One can think that there is a Turing (or similarly
defined machine) for each function. A thesis has been
proposed (by Church) that suggests that there is an
associated abstract machine for a function, if the
function can be solved intuitively [1]. However,
there can be some discussion about aspects of
mathematics, to date not computed or partly
computed, yet handled by human expertise; this
paper will ignore such philosophical matters.

To be solvable, the algorithm for the function must
be expressed in the precise manner suggested above.
By no means have all possible functions been
reviewed. Yet, several unsolvable functions have
been identified. One can think of two major classes
of unsolvability. The first is directly related to the

Mid-America Conference on Intelligent Systems (MACIS 1994)
“Applications in Manufacturing and Service Industries”
Oct. 27 & 28, 1994 — Marriott Hotel, Overland Park, Kansas

limits of the Turing machine. The other is related to
complexity which will be discussed below.

Hence it has been commonly accepted that not all
functions are solvable or computable (though they
can be approximated). Some fundamental questions
might be: are all unsolvable problems equivalent, is
there a reasonable approximation (e.g. heuristic) to
make a problem solvable, how good is the
approximation, is its execution time acceptable, and
how do we judge approximations.

Figure 3 illustrates how these concepts relate. There
is a large class of functions, some of which are
solvable intuitively. Some of the latter may or may
not be computed in an algorithmic manner (they
might be computed heuristically, for instance). The
belief is that an algorithm can be computable
(complexity, though, is a definite factor.). The work
in this area uses mathematical induction quite
frequently. There are issues that arise from the
technique and whole classes of computing are outside
of the discussion, yet these have made great stride.
One definite factor in the argument is that human
expertise can bring to bear talents affecting
computing success. We will look at this issue a
little later.

all possible
functions
solvable

intuitively

Note: not to scale

Figure 3. Functions and Computability.

The success of computer science rests with
identifying computable functions, decidable
predicates, and solvable problems [13]. The analysis
development task can assist in reformulating
problems on the atf side such that they might be
computable on the bif side. The design development
task can assist in providing a means to determine
computable definitions. However, prototyping is the
prime means to provide a proof of computability and
a measure of effectiveness of the solution. As well,
prototyping can help to experimentally explore
unknown aspects of a domain.

A second class of unsolvability deals with

45

complexity. Given the intricacies of knowledge in
many application areas, a solution will likely have
characteristics that become computationally complex.
This means that one must resort to an approximation
[3], however any approach to computing must include
applied methods that are incremental, empirical,
experimental, and measurable. The complexity of an
algorithm can be stated in terms of the space required
by, and the time utilized in, execution. The latter is
considered the more important and can be stated in
terms of a lower and upper bound. Heuristics can be
handled similarly, though it will be with less
precision.

Several problems have been identified in terms of
their complexity as being unsolvable except through
approximation. The solution might be either
algorithmic or heuristic. Unfortunately, the types of
problems faced by AI/KBS/KBE, like those of
operations research, have generally been of this very
complex nature [8].

A class defined for these problems is called
nondeterministic polynomial (NP) [3]. Essentially,
this means that an equation specifying the time
required to determine a solution on a nondeterministic
abstract machine will not be a simple polynomial.
Some of the known hard problems are: 1) formula
satisfiability - given a collection of boolean formulas,
is it satisfiable? 2) clique problem - given an
undirected graph, what is a complete subgraph of any
arbitrary size? 3) vertex-cover problem - given an
undirected graph, what is a vertex cover of any
arbitrary size?. Other problems include: hamiltonian-
cycle, subset-sum, traveling-salesman, subgraph
isomorphism, integer-programming, set-partition,
graph-coloring, bin-packing. Yet, despite this large
list, working approximations have been proposed for
many of these problems, and these have been applied
successfully.

Now, considering logic, the basis for computer
systems was established after Boole's 1847 papers.
Since then, there has been much work in
mathematical and computational logics. The past
twenty years has seen a lot of activity in establishing
higher-order logics, theorem provers, and universal
algebras. In general, even simple logics, such as first
order, are undecidable. One can relate this
characteristic to the notion that termination of an
algorithm in the Turing sense can not be known to be
true before the occurrence.

As well, at the lowest level of execution,
satisfiability of a collection of boolean formulas is in
the NP class, however there are fragments of program
logic that are decidable and thereby computable.
Successful solutions consist of approximating

Mid-America Conference on Intelligent Systems (MACIS 1994)
“Applications in Manufacturing and Service Industries”
Oct. 27 & 28, 1994 — Marriott Hotel, Overland Park, Kansas

algorithms that consist of various mixtures of these
fragments. The issue will be, then, to map known
solutions and test the veracity of the approach, which
implies using an experimental approach.
Consistency becomes an operational issue: attempt to
preserve it during execution.

Of the several approaches that have been proposed and
researched for handling these problems of logic, an
increasingly common approach has been to focus on
developing an object basis for the system. This
approach allows the issues of logic to be subsumed
into a modeling technique that matches well the
intuitive human grasp of entities, their characteristics,
and relationships [6][12]. This approach does not
remove the problems, it just puts them into a
different context that makes them more tolerable.
The focus can be on a constructive build of capability
and reuse of known computable functions, though,
there will always be the issue of proving that the
solution fits the problem and that consistency issues
are resolved.

Other efforts in logic have been directed toward
defining nonmonotonic logics [4]. These approaches
have evolved from the real requirements within
complex domains when dealing with temporal,
causal, and modal issues. The qualification problem
recognizes that the number of preconditions for an
action can be immense. The issue is how to
reasonably constrain the scope, else the amount of
computation before a decision will grow too large,
thereby compounding the decision action. The frame
problem recognizes that in any situation there will be
those things that do not change. For any decision, a
need to specify in their entirety all the constants,
would amount to a tremendous overhead of
bookkeeping. The ramification problem recognizes
the unreasonableness of explicitly recording all the
possible consequences of actions.

Some of these issues of logic come into play with
ADS and ICAD. In the case of ADS, there is the
requirement to explicitly state defaults, as needed, or
to extend the logic to handle a closed-world approach.
The value of "known as false" is not the same as
"unknown." unless one makes the assumption that
one is dealing with a closed-world. This allows one
to decide that the absence of an object with a
particular attribute denotes that the attribute is not
true for any object. The establishment of defaults
will reduce the occurrences of the unknown state,
however these defaults must be consistently
maintained during the system life cycle. On the other
hand, if one handles this problem by extending the
logic, then there is the added complexity of these
statements and the possible effects on the
computation. As can be expected, either approach has
implications related to VVT.

46

In the case of ICAD, part of the power of ICAD is
that it implements a lazy-evaluation scheme for
determining the values of non-bound variables. This
approach essentially reduces computational
complexity to a manageable portion in that the whole
is not needed in order to derive a part. Or in terms of
a breadth versus depth expansion, ICAD is mixed and
will allow the minimal path to be followed.
However, the downside is that a demand for a value
will cause dependency-driven backtracking in an
attempt to determine a value. The amount of
computation involved with such a demand is not
known deterministically which can cause
unpredictable runtimes. In many cases, search in
computation will loop. Termination constraints need
to be imposed externally.

The reality of these issues is an integral part of the
current state-of-the-art in computing. Knowledge
systems solve problems similar to many of the
above, hence the issues of computability,
complexity, and logic are very important to these
systems.

4 REQUIREMENT: VERIFICATION,
VALIDATION, AND TEST (VVT)

The future always has uncertainties, however there is
no question about the following: 1) The demands
upon computer systems will continue to increase
through more types of computer applications being
attempted. One example is the growing use of the
computer for support of design, planning, and
manufacturing of complex parts. 2) The complexity
of computer systems will continue to grow due to the
nature of the application domains that will be need to
be understood. An example is the hard problem of
representing and making decisions within a design and
feature space. Increasing, too, will be the efforts
required to certify a computer system through VVT.
Though a wide-range of techniques will come into
play, testing will continue to be of upmost
importance for KBS/KBE.

In general, the development of a computer system can
have well-defined points at which VVT activity might
occur (See Figure 4). The user expresses the intent
for a computer system in the form of requirements.
The interpretation of these, in the traditional sense,
will be in the form of a specification which, then,
drives the program development. The program, after
testing, gets released to the user for evaluation. In
the traditional sense, the stages were more clearly
marked than one finds with KBS/KBE. Now, a
program can be verified by checking whether it does
what it is specified to do. This is mostly a computer-
related problem. Validation, on the other hand,
concems itself with whether a program does what it
should do in the larger scope that includes the intent
and the expectation, as well.

Mid-America Conference on Intelligent Systems (MACIS 1994)
“Applications in Manufacturing and Service Industries”
Oct. 27 & 28, 1994 — Marriott Hotel, Overland Park, Kansas

Let's look a littde more at verification. It can be
approached from several angles, usually via
walkthroughs and code analysis, There can be
automated approaches followed for algorithms,
though only the most simple algonthms will be
successfully verified, in practice. Heunstics and
knowledge are not as casily verified as are algorithms
[8]. Research into verification covers several areas,
such as formal (mathematical) specifications, theorem
proving techniques, and code generation from

specification [9){14).

Formal approaches to verification are plagued by the
problems of computability. Program logic without
bindings is decidable assuming a closed domain. The
inclusion of bindings, such as quantifiers and
procedure definitions, make the problem undecidable,
Then 100, any thoroughly proven specification, given
the state of the art, does not encompass some
important factors, such as influences from the
runtime environment., In short, the work and
resources for formal methods (one program == many
pages of proof) are excessive. Now, as tools for code
generation improve, the effort at verification will be
more directed toward evaluating (simulating) the
specification itself [10),

This brings up validation which is the harder and
wider issuc of whether a program does what it is
supposed to do. This issue involves underlying
questions of knowledge, epistemology, ontology, the
representation of knowledge, and the particulars of a
domain [2]. Among the criteria for evaluation will be

| Design/Specification)
Dzailled Degigns etc. &

-

~ #

=)
Implementation

The world of intents,
expectations, and judgements

validity, usability, reliability, and effectiveness.
Validity will need to consider consistency and
completeness. Given the added complexities and
uncertainties, knowledge processing projects are
required to base their activities upon incremental,
cyclic, empirical, evolutionary that favor
carly and continual value-added results and
measurements,

One good VVT approach utilizes the mathematical
techniques of experimental design, augmented with
domain knowledge. An example would be a
modification of other techniques, e.g. Taguchi's
signal/noise, Mill's Cleanroom Engineering [11), and
structured testing. Such an approach would include
multivariate sampling, measurements via fuzzy
evaluations, and black box functional views. One
major characteristic would be that testing would be
extended into the full life cycle of the system through
continual/penodic auditing of a system’s verscity (8).

There are two issues that come into play with
KBS/BKE that complicate VVT. The inference
engine brings in additional factors (c.g.
undecidability, nondeterminism) which thwart
muhodsthatlookatcodcmucally And, an atempt
to bring in the domain raises the issues of
complexity. Some attempts at solvmg these
problems range from taking a diagnostic viewpoint
(9] o focusing on an operational viewpoint [16]{17).
The pitfalls lic with the assumptions about and
current understanding of the domains, Additionally,
there is a potential pitfall

Asobiaucn Requeny/
Amlmk:mlu

Doel the code behave?

'

<-> Tradidional Flow
0 KBS/KBE Flow, arrow size
denotes relative process time

m A set of tasks/processes with
fuzzy boundaries

Figure 4. Verification, Validation, and Test

Mid-America Conference on Intelligent Systems (MACIS 1994)
“Applications in Manufacturing and Service Industries”
Oct. 27 & 28, 1994 — Marriott Hotel, Overland Park, Kansas

always present in the development of KBS and KBE
systems: the verification and validation efforts
themselves are as prone to succumb to the issues of
computability and complexity as are the systems
undergoing testing.

5 CONCLUSION

Computability and complexity are real issues in
solving problems by computer. The chasm of
unsolvability is bridged through approximations that
are comprised of collections of computable patterns.
This applies to testing as well as to other aspects of
computing. Combinatorics preclude the use of
“exhaustive” techniques, except for small cases.
Verification and validation are important pursuits.
Testing can be accomplished through computationally
supportable approaches.

Despite all the problems of complex computing,
people with their talents and expertise have brought a
lot to the equation that is important to any practical
computing success. This will continue to be so; one
focus needs to be toward increasing the amount, and
capability, of tools for supporting good people in
evaluating a system in the context of verification and
validation and toward having good processes in place
for handling requirements and development.

The continued success of KBS/KBE will be founded
upon a reasonable and creative approach to
overcoming the limitations of computing within the
constraints of possibility, cost, and validity.

6 REFERENCES

[1] Boolos, G.S. and R.C. Jeffrey. 1989.
Computability and Logic. Cambridge, UK:
Cambridge University Press.

[2] Collins, Harry M. 1994. The Nature of Scientific
Knowledge - Some Implications for Aritficial
Intelligence. Phi Kappa Phi Journal. 2:28-31.

[3] Cormen, T.H. et al. 1990. Introduction to
Algorithms. Cambridge, MA: The MIT Press.

[4] Ginsberg, M.L. 1987. Readings in Nonmontonic
Reasoning. Los Altos, CA: Morgan Kaufmann
Publishers, Inc.

[5] Girard, J-Y and Y. Lafant, P. Taylor. 1989.
Proofs and Types. UK: Cambridge University Press.

[6] Gougen, J.A. and R.M. Burstall. 1992.
Institutions: Abstract Model Theory for Specification
and Programming. Journal of the ACM 39:95-146.

[7] Guha, R. V. and Douglas B. Lenat. 1994.
Enabling Agents to Work Together. Communications
of the ACM. 7:127-142.

[8] Guida, G. and G. Mauri. 1993. Evaluating
Performance and Quality of Knowledge - Based
Systems: Foundation and Methodology. JEEE
Transactions on Knowledge and Data Engineering.
5:2:205-225.

[9] Loiseau, L. 1993. A Diagnosis Approach to
Formulate Validation of Knowledge Based Systems.
In 1IJCAI-93 Workshop on Validation, Verification
and Test of KBSs. 51-58.

[10] Lowry, M.R. 1992. Software Engineering in the
Twenty-First Century. A Magazine 13:71-87.

[11] Mills, Harlan D. 1988. Stepwise Refinement and
Verification in Box-Structured Systems. /EEE
Computer 6:23-36.

[12] Monarchi, D.E. & G.1. Puhr. 1993. Research
Typology for Object-Oriented Analysis.
Communications of the ACM. 9:35-47.

[13] Ralston, A. and E.D. Reilly (Eds). 1983.
Encyclopedia of Computer Science and Engineering.
New York: Van Nostrand Reinhold Company, Inc.

[14] Rousset, M-C and P. Hors. 1993. A formal
framework for structures & deductive knowledge
consistency checking. In IJCAI-93 Workshop on
Validation, Verification and Test of KBSs. 59-66.

[15] Vickers, S. 1989. Topology via Logic.
Cambridge, UK: Cambridge University Press

[16] Williamson, K. and M. Dahl 1993. Knowledge
Base Reduction for Verifying Rule Bases containing
Equations. In AAAI-93 Verification and Validation
Workshop.

[17] Zlatareva, N. 1993. Distributed Verification and
Automated Generation of Test Cases. In IJJCAI-93
Workshop on Validation, Verification and Test of
KBSs. 67-77.

7 ACKNOWLEDGEMENTS

Author wishes to acknowledge discussions with Mike
Wallace, Roger Stumps, John Huffman, Mark Dahl
and other co-workers concerning topics in the paper.

8 BIOGRAPHICAL SKETCH

JOHN M. SWITLIK is an Advanced Computing
Technologist with BCS (IDS/Sim Group - TIS/CAS-
W). His areas of interest are: intelligent/evolutionary
systems applied to CAD/CAE and the
mathematic/logic basis of computing theory/practice.
Current projects include intelligent design, KBE, and
concurrent SE. He can be contacted at:
jms5326@ks.boeing.com.

Mid-America Conference on Intelligent Systems (MACIS 1994)
“Applications in Manufacturing and Service Industries”
Oct. 27 & 28, 1994 — Marriott Hotel, Overland Park, Kansas

Mid-America Conference on Intelligent Systems (MACIS 1994)
"Applications in Manufacturing and Service Industries"

Oct. 27 & 28, 1994

Marriott Hotel, Overland Park Kansas

Farhad Azadivar
Director
Advanced Mfg. Institute

Kansas State University

Shing Chang
Assistant Professor
Industrial Engineering

Kansas State University

Proceedings

Edited by:

Sponsored by:

David Ben-Arieh

Associate Professor
Industrial Engineering
Kansas State University

Hani Melhem
Assistant Professor
Civil Engineering
Kansas State University

The Advanced Manufacturing Institute (AMI)
Kansas State University, Manhattan, KS

Co-Sponsor:

Center for Excellence in Computer Aided Systems Engineering,
University of Kansas, Lawrence, Kansas

Mid-America Conference on Intelligent Systems (MACIS 1994)
“Applications in Manufacturing and Service Industries”
Oct. 27 & 28, 1994 — Marriott Hotel, Overland Park, Kansas

Participating Organizations:

University of Nebraska-Lincoln

University of Missouri-Rolla

Institute of Industrial Engineers - Greater Kansas City Chapter
Silicon Prairie Technology Association

AlliedSignal, Inc.

Boeing Commercial Airplane

Mid-America Manufacturing Technology Center (Kansas)
American Association for Artificial Intelligence

Black & Veatch

Institute for Electrical and Electronics Engineers- Kansas City Computer Society

Data Discovery, Inc.

In Cooperation with:
Oklahoma Center for Artificial Intelligence and the Oklahoma Symposium on Artificial

Intelligence
Oklahoma State University, University of Oklahoma and University of Tulsa

Conference Committee:

Farhad Azadivar Conference Chair , Advanced Manufacturing Institute, Kansas State University
Eddie Fowler Program Chair, Kansas State University/Electrical & Computer Engineering
Susan Jagerson Conference Coordinator, Advanced Manufacturing Institute, KSU

Mid-America Conference on Intelligent Systems (MACIS 1994)
“Applications in Manufacturing and Service Industries”
Oct. 27 & 28, 1994 — Marriott Hotel, Overland Park, Kansas

Organizing Committee:

John Atkinson Data Discovery, Inc.

Susan Catts Silicon Prairie Technology Association

John Cheung University of Oklahoma

Fred Choobineh University of Nebraska-Lincoln

Cihan Dagli University of Missouri-Rolla

Dave Douglass AlliedSignal, Inc.

John Switlik Boeing Commercial Airplane

Costas Tsatsoulis | Center for Excellence in Computer Aided Systems Engineering
John Voeller Black & Veatch

Caroline Zumbrunnen Mid-America Manufacturing Technology Center

Technical Committee:

Farhad Azadivar Kansas State University/Industrial Engineering
Eddie Fowler Kansas State University/Electrical & Computer Engineering
David Ben-Arieh Kansas State University/Industrial Engineering
Shing Chang Kansas State University/Industrial Engineering
| Prakash Krishnaswami Kansas State University/Mechanical Engineering
Hani Melhem Kansas State University/Civil Engineering

Mid-America Conference on Intelligent Systems (MACIS 1994)
“Applications in Manufacturing and Service Industries”
Oct. 27 & 28, 1994 — Marriott Hotel, Overland Park, Kansas

Table of Contents

PArtpRING OMTANIERHIONS: <. o v v 0 016 470 2w 000 on o erd 1o 665818 ¢ismer 0, 818, 0 or 9: 07018 1
Orpantzlng COMMIREE ; . oo s 50 s o5 3 4 s RS HiaEa Weise o o u a aresalia: #/ale seials 1
PRRRIGES. .o .0 conv o mminimnn o A0 0B bior e oL @0l oL e oo 8 a s ol oL ravaTave e e e el h o)|
Session 1A Feature Based DesigninManufacturing - .« v v o v v v v v v e i n a0 s
An Expert System for Automated Productionof TumedParts uennay 2
Integrated Product Definition Representation for Agile Numerical Control Applications. 8
Feature-Based Tolerancing for Advanced Mfg. Applicationsy 16
Object Oriented Assembly Representation for Computer Aided Robotic Assembly 24
Session 1B Practical Antificial Intelligence IssuesiaMfg. . . .« . -« v v oo i i
Connecting the Tools Of TEChnoIORY . o v o0 b 00 00 000 a0 00 s ssviverssosesss 33

€D Practical Issues of AL c i vi i inni i i 41
Using Artificial Intelligence to Bridge Communication Gaps in the Steel Building Industry 49
Session 2A ‘Patter RACOBDIION «. o o /6 iv.ia o0 6 usmes 01010 "4 er a0 0, #1970 07 HG o8 0070100 $iin T 08
Cartographic Pattern Recognition Using TemplateMatching v on v 57
Cluster Recognition Algorithms for Battlefield Simulation.oy 65
Automated Part Recognition and Profile Inspection for Flexible Mfg. Systems. 73
Session 2B [ntelligent Systems for DIAgNOSHCES .+ « + <« v v v v v v v v v b e SESEPEVIN
Express: An Intelligent Troubleshooting Aid v aaann 81
A Study of Al Application to Telecommunications Network Management iRl e) p 86
The Cost Consideration inDiagnosis ¢ . v vt v v v v v s rernsrenanasaanens 93
A Rebar Corrosion Decision System using Machine Learning0 oo v v v v e v v 100
Session 3A Computer Aided Process PIAORIAG . « « v v« v v v v v v s n i s

&> An Approach to Applying Artificial Neural Networks in Computer Aided Process Planning. 107
Modelling of Surface Generation MechanismsinTumingo oo an e 114
Case Based Process Planning System forPrismaticPartso vnvevenan 122

Mid-America Conference on Intelligent Systems (MACIS 1994)
“Applications in Manufacturing and Service Industries”
Oct. 27 & 28, 1994 — Marriott Hotel, Overland Park, Kansas

Session 3B Applisationsof Alin Design & MIg._ - . . . v oo v iy
Representing Manufacturing Features to Support Design and Process Changes
Neural Models of Defect- Driven Hardwood Log Sawing.o oo

An Automation Based Framework for Analysis and Control of Flexible Mfg. Systems

An Intelligent Decision Support System for ProductPricing . + + . . . o o v oo v o e o

BIDDER: A CBR Application for Bidding for SoftwareCootracts« . -« v v o v o

Sesslon 4B Applications of Fuzzy Logic and Neural Networks. « . .« -« v oo oo v v i v v v

Temperature Control of A Semibatch Polymerization Reactor By An Adsptive Hybeid
SYSUEM o o s s ss s s s es v ta e b e s er s e e e eebee et b0t a0

Parameter Design & Control For a Tuming Process Using Fuzzy Logic

Session SA Aland SIMuIation . . . o - v b e i et et aaie e
A Vehicle Distribution Planning System Using Heuristic and Simulation.o o oo o
Prologue to a Theory of Design Changeand its Automationo

Optimizing Systems’ Structural Design Using Simulation-Optimization

A Customer-Driven Information Decomposition and Control System . - . . . o -« o v v v v o v v

Manufacturing Process Planning As a Key Function of Concurrent Engineering

Mid-America Conference on Intelligent Systems (MACIS 1994)
“Applications in Manufacturing and Service Industries”
Oct. 27 & 28, 1994 — Marriott Hotel, Overland Park, Kansas

130

138

153

160

169

176

185
193

201

210
217

223

